






the levels of another factor. Only crossed factors may interact.
For this reason, nested factors cannot be assessed for interaction

another effect. Thus, confounds or aliases are co
uncertainties about the source of some effect. When considered
formally in an experimental design, confounds and aliases refer to
main effects or interactions in the model that cannot be
distinguished statistically from other main effects or interactions in
the model. If an extraneous or nuisance variable is not controlled

that nuisance variable

The observation of two or more experi
under identical treatment conditions to obtain an estimate of
experimental error or error variation and permit a more precise

‘Completely Random

ect experiences only

Mixed Design An experimental design in which some factors in the evaluation
are between-subject factors and other factors are within-subjects

Random Factor Factor for which the treatment levels are a random sample from a
larger population and inferences will be drawn about this
population.
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Experimental Design Definition
Term

Fixed Factor Independent factor for which all treatment levels about which
statistical inferences are to be drawn are included in the study.
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such as learning about the device or the roadway, noting that a simulator study includes crash
hazard events, and so on. Mixed designs are useful for data economy and are mandatory when,
for example, subject variables are a formal part of the study. For example, gender or age are
between-subjects variables that might be included in a mixed design. Perhaps all subjects would
be measured repeatedly under different driving conditions, in which case driving condition
factors are within-subjects variables. Care must be taken in the choice of these experimental
design alternatives and the choice of which approach to adopt depends on the availability of test
subjects and the characteristics of the specific evaluation itself (Williges, 1984). Appendix F
provides further descriptions of alternative experimental designs.

ECONOMIC DATA COLLECTION DESIGNS

Oftentimes, there will be constraints to the use of full factorial designs in device evaluations
(Williges, 198 1). Some factors cannot be crossed in the real world. It-may not be possible to
collect data from the entire factorial design at one time. There may be more factors than can be
reasonably included in a full factorial experimental design. For these reasons, economical data
collection approaches are a necessity and several different classes of approach will be presented
here.

HIERARCHICAL DESIGNS

Hierarchical designs are suitable when it is appropriate to nest one or more factors into other
factors. That is, levels of one factor appear only at one level of another factor in hierarchical
fashion. The hierarchical design results in a smaller number of treatment combinations when
compared to a complete factorial design. Because nested variables are not crossed with the
factors they are nested within, it is not possible to assess any interactions that may be present.
Thus, care must be taken in planning hierarchical designs when used for purposes of data
collection economy (Williges, 1984).

CONFOUNDED FACTORIAL DESIGNS

Sometimes it is not possible to collect all the workload assessment data needed in a single data
collection session. Thus, the evaluator must collect the data in stages or in “blocks”. There are
procedures (e.g., Kirk, 1983) that can be used to define blocks and systematically confound or
alias block differences with higher-order interactions. This allows for the assessment of all main
effects and lower-order interactions at the expense of the higher order interaction used in
developing the treatment combinations for the blocks. Tijerina et al. (in press) used a
confounded factorial design to assess workload effects of lighting (night vs. day), traffic density
(low vs. high) and road type (divided vs. undivided). It was not feasible to collect workload
measures on a single driver in all 23 or 8 treatment combinations. Instead, it was only feasible to
collect workload measures on four of the 8 treatment combinations. Figure F-l shows how the
design was blocked across two groups of subjects such that the main effects and two-way
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interactions would not be confounded with possible differences across the two groups of
subjects. Only the three-way interaction is completely confounded with the subject group
effects. Since three-way and higher order interactions tend to be either not statistically
significant or account for only a trivial proportion of the variability in a measure of performance,
this was judged to be a worthwhile tradeoff.

FRACTIONAL FACTORIAL DESIGNS

When it is impossible to collect data on all combinations of all factors or variables of interest
from a higher-order design, a fractional factorial design may be used. As its name implies, a
fractional factorial experimental design employs only a fraction of a full factorial design. That is,
this experimental design approach and data collection procedure uses only a carefully chosen
fraction of all possible combinations of factors to estimate the effects of those variables and
interactions. For example, if there are eight (8) factors that might be included in an experiment
or evaluation and each factor has only two levels, there are 28 = 256 possible experimental
treatments. On the other hand, a one-quarter fractional factorial design (28-2) requires only 64
experimental treatments to be run in an experiment. The data collection economy is bought with
aliasing, i.e., confounding main effects and two-factor interactions with higher-order interactions.
Higher-order interactions are assumed to be non-existent or trivial, So, if, for example, a two-
factor interaction is statistically significant, it is attributed to that pair of factors rather than
higher-order interactions aliased with it. The reasonableness of this approach comes from the
fact that main effects tend to be larger than two-factor interactions, two-factor interactions tend to
be larger than three-factor interactions, and so on (Box, Hunter, and Hunter, 1978). In addition
to the general result that higher-order interactions contribute little or no additional explanatory
power, the ability to comprehend and explain such interactions in a parsimonious way becomes
impossible.

For most practical purposes, there is little advantage to evaluating the impact of factors alone and
in two-factor interactions. This leads to the concept of design resolution. Design resolution
refers to the precision of the estimated effects from the experiment and the types of aliases that
might exist. In general:

l A design of Resolution R = III does not confound single-factor effects (called
main effects) with one another but does confound main effects with two-factor
interactions.

-  A design of Resolution R = IV does not confound single-factor effects and two-
factor interactions but does confound two-factor interactions with other two-factor
interactions.
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B B

Conditions Conditions
A1, B2, C1 A1, B1, C1
A1, B 1 ,  C2 A1, B2, C2
A2, B1, Cl A2, B2, C1
A2, B2, C2 A2, B1, C2

Figure F-l. Confounded Factorial Design Strategy for Assessing Driving Condition Factors and
Their Effects on Driver Workload.
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As mentioned previously, higher-order interactions (i.e., three-factor interactions and higher) are
often not significant or account for so little of the variation in the response that they are trivial.
For this reason, a significant main effect aliased with a higher-order interaction is attributed to
the main effect alone. Similarly, a two-factor interaction that aliases with a three-factor
interaction is attributed to the two-factor interaction alone. Since human performance and
behavioral data sometimes yield two-factor interactions of interest, fractional factorial designs of
resolution V or higher are recommended.

Originally, the fractional factorial approach to experimental design was developed to allow for
sequential experimentation. That is, research or evaluations would be done in stages and
ambiguities that arise in the first stage of the research could be investigated in subsequent data
collection stages that dis-ambiguate the first stage results. It is often the case that product
evaluations do not allow for sequential investigations, Thus, a resolution V design is
recommended if only a single investigation is to be carried out. Finally, it should be noted that
fractional factorial designs typically involve all factors at the same number of levels, most
commonly 2 levels. Thus, the factors may be continuous variables with levels chosen for “high”
and “low” or they may be dichotomous variables (e.g., male or female drivers).

The attachment to this appendix contains examples for Resolution III, IV, V, VI, and VII
designs to study up to eight factors and indicates the number of unique runs required. The
negative (-) sign and positive (+) signs represent the two levels of each factor. Assignment of
factors and factor levels to codes is arbitrary. A software program has been developed, entitled
the Automated Experimental Design (AED) Assistant, that will automatically generate fractional
factorial design assignments for 2 level designs with up to 20 factors and a maximum of 256
treatment combinations, for 3-level designs with up to 12 factors and maximum of 243 treatment
combinations, and for 5-level designs with up to 8 factors and a maximum of 125 treatment
combinations (System Development Corporation, 1986).

CENTRAL COMPOSITE DESIGN APPROACHES

The fractional factorial design (along with confounded factorial designs and single-observation
factorial designs) supports economical data collection for hypothesis testing, i.e., to test whether
a driver-performance measure reliably varies with some workload factor. It is well suited to the
analysis of categorical variables (at two levels, usually, though 3-level and 5-level fractional
factorial designs are also possible). In other situations, however, the evaluator may seek to
determine a quantitative relationship between driver performance and several quantitative
independent factors, e.g., in-cab device parameters. Such a functional relationship is useful in
that it allows for comparative predictions of various alternative system configurations, during,
say, product development (Williges, 198 1). The empirical model form that has been
recommended for human factors use is a second-order polynomial, i.e.,
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where y is a dependent measure (i.e., response variable),
Bi terms are the estimated model coefficients for pure linear effects,
Bii terms are the estimated model coefficients for pure quadratic effects,
Bij terms are the estimated model coefficients for two-factor interactions,
xi is the main effect of the ith factor,
xi x j  is the interaction between the ith and jth variables,
xi2 is the pure quadratic term for the ith factor, and
e is the error term or difference between actual and estimated response
values.

Least squares regression estimates of the beta parameters specified in the second-order
polynomial response surface is given by the expression.

I3 = (X'X)-1X'Y

where X

X’
(X’X)-1

Y

X’Y

is an n x p design matrix for a particular fractional factorial
design (see Appendix N), augmented so that column 1 is a
column of 1s so that the intercept may be estimated;
is the p x n transpose of the X design matrix (augmented);
is the p x p inverse of the sum of squares and cross products
matrix; and
is the n x 1 column vector of responses for each condition
run; and
is the p x 1 column vector that is the matrix product of the
two matrices involved.

As with the fractional factorial design, the central composite design data is analyzed with
regression methods and the ANOVA to assess the statistical signficance of each of the terms of
the fitted regression equation. The selection of levels of each variable to economically collect
data to build the empirical second-order polynomial equation has been discussed by Williges
(1980) and Williges and Williges (1992).

In order to build such a model, data are needed to solve the least squares regression equations.
Box and Wilson (195 1, cited in Williges, 1981) developed an experimental methodology that
determines optimal combinations of various quantitative factors to define  the response surface.
The design approach is to use a composite three separate parts: a) 2k factorial or 2k-1 fractional
factorial design portion; b) 2k additional points that outline a star pattern in the factor space; and
c) 1 center point from which the entire composite of points radiates. For this reason, this is
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referred to as a central composite design. Generally, any second order, central composite design
can be specified with a total of T points:

T=F+2k+l

where F = 2k (or 2k-p)
k = the number of factors under investigation.
P = a number that represents the degree of fractionation in the fractional

factorial design (1 = one-half fraction; 2 = one-fourth fraction; 3 = one-
eighth fraction; 4= one-sixteenth fraction)

For example, consider a three-factor evaluation. If one substitutes k = 3 in the equation above,
the value of T = 15, i.e., fifteen unique combinations are required to specify the second-order
polynomial response surface. If one used a complete factorial experimental design, then with
each factor at 5 levels (the number of levels needed to map out a second-order polynomial), there
would be 53 or 125 combinations. The economy of approach is apparent.

Like the fractional factorial approach, this economy comes at a price. Care must be taken such
that the 2k combinations of factors, if substituted by a fractional factorial design portion due to
the large number of factors of interest, be chosen so that all first- and second-order components
are present and are not aliases of each other so that a complete second-order response surface can
be generated (Williges, 1981). Clearly, all factors must be quantitative, else it makes little sense
to discuss linear and quadratic components. While minimally only 3 levels of a factor are needed
to outline a curve, 5 levels, appropriately chosen, will provide sufficient detail to develop an
entire surface.

Figure 3-2 shows a hypothetical example of a three-factor central composite design to evaluate
automobile driving performance (y) as a function of wind gust characteristics (Williges, 198 1).
Only 15 unique treatment combinations are required, as indicated in the coding scheme at the
bottom of the figure. Replication is needed to allow for the analysis of variance mean square
error term to be defined. This may involve running two (or more) subjects in each of the
treatment conditions or perhaps having a single group of subjects in a repeated measures format
drive in all treatment conditions and thus provide replication over the entire design surface. See
Williges (198 1) for more details about replication decisions.

The value of a remains to be specified. While there are alternative ways to define the a level
(see Williges, 198 I), one simple way is such that the first and second-order beta weights are
orthogonal (which facilitates least squares regression and analysis of variance:
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DESIGN CONFIGURATION

Treatment Wind Gust
Combination Frequency

1
2
3
4

6
7
8
9 
10
11
12
13
14
15 .

+1
+1
+1
+1

5                  -1
-1
-1
-1
+ a
- a
0
0
0
0
0

2 ’

x2
Wind Gust
Velocity

+1
-1
+1
-1
+1
-1
+1
-1
0
0

+a
-a
0
0
0

x3
Wind Gust
Direction

+1
+1
-1
-1
+1
+1
-1
-1
0
0
0
0

+a
-a
.O

Figure F-2. Central Composite Design Illustration. Source: Williges (1980).
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where Q = [F + 2k + C)1/2 - F 1/2] 2

C = the total number of center points (1 if equal replication is used)
F
k:

2k (or 2k-p)
the number of factors under investigation.

P= a number that represents the degree of fractionation in the fractional
factorial design (1 = one-half fraction; 2 = one-fourth fraction; 3 = one-
eighth traction; 4= one-sixteenth fraction)

For the three factor design, Q = [(8 + 2(3) + 1)” - 81/2 ] 2 = 1.092. This implies that a =
[(l .092)(8)/4]1/4 = 1.216. The application of the coding scheme is then applied by assigning the a
codes to the lower and upper limits of the factor range of interest, the code 0 is assigned to the
midpoint of the range, and the -1 and +l codes are assigned to factor values determined through
linear interpolation. An example is provided in Table F-2. The design factors of interest are in-
cab visual display luminance (x1 ) (selectable over a range from 14 cd/m2 to 140 cd/m2 ), visual
display contrast ratio (x2 ) (selectable over a range from 2: 1 to 30:1), and symbol size (x3 )
(selectable over a range from 10 to 28 arc-min). The response (y) is driver visual allocation time
(number of glances x mean glance duration). The levels of each factor are included in Table F-2.

The central composite design, then, gets its name from the fact that it is a composite of a 2k (or
2k-p) design, augmented by a star pattern of data collection points that radiate from a center point.
the Automated Experimental Design (AED) Assistant software (System Development
Corporation, 1986) will also automatically generate central composite designs.

REPLICATION AND SINGLE-OBSERVATION FACTORIAL EXPERIMENTAL
DESIGNS

In each of the preceding discussions, it was assumed that there were replications in each
treatment combination of the experimental design in the form of two or more subjects in each
treatment combination or having each subject perform in each treatment combination two or
more times. In general, the greater the number of replicates in each treatment combination, the
greater the precision in estimating error variance or experimental error. The price for this
precision, however, is increased costs in data collection.

One simple approach to reduce the number of data observations to be collected is to eliminate
replication altogether. This might be accomplished by assigning only one subject per treatment
combination in a between-subjects experimental design. Alternatively, only one subject may be
observed only once per treatment combination in a single-subject study. Many other schemes are
also possible. Statistical tests of main effects and lower-order interactions are carried out by
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Table F-2. Levels of three independent factors in Central Composite Experimental Design. (See
text for explanation).

tral Composite Design Codes and Associated Regressor Variable

x3 : Character 10 arc-min 12 arc-mm
I

19 arc-min
I

26 arc-min 28 arc-min
Size I

Notes:
l See previous discussion for derivation of a.
- -a value is set to minimum of factor (regressor) range of interest
- +a value is set to maximum of factor (regressor) range of interest
l 0 value is set to mid-point of range from maximum to minimum of regressor range.
- -1 value is set to l/l .216 = .822 of the range between 0 and -a below the midpoint value
l +l value is set to l/l .216 = -822 of the range between 0 and -a above the midpoint value
l Note that all regressor values have been rounded.
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pooling higher order interactions into a pooled-error term. This procedure assumes that the
higher order terms are either non-significant or account for only a trivial proportion of the
variability in the dependent measure. It is still possible that full factorial designs are infeasible
because of the great number of treatment combinations. Under such conditions, the other
economical data collection approaches should be considered.

SUMMARY

Efficient data collection supports efficient data analysis. For this reason, the data collection
strategies presented here are beneficial to workload assessment and research. It is usually the
case that the actual data collection and data capture vary somewhat from what was planned,
especially in on-the-road evaluations or studies. The consultation of an experienced statistician
or data analyst will be worthwhile to deal with the details of a statistical evaluation suitable for
the data in hand.
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ATTACHMENT

EXAMPLE 2K FRACTIONAL FACTORIAL DESIGNS
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